Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库。Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到硬盘上进行保存。
因为是纯内存操作,Redis的性能非常出色,每秒可以处理超过 10万次读写操作,是已知性能最快的Key-Value DB。
Redis的出色之处不仅仅是性能,Redis最大的魅力是支持保存多种数据结构,此外单个value的最大限制是1GB,不像 memcached只能保存1MB的数据,因此Redis可以用来实现很多有用的功能,比方说用List来做FIFO双向链表,实现一个轻量级的高性 能消息队列服务,用他的Set可以做高性能的tag系统等等。另外Redis也可以对存入的Key-Value设置expire时间,因此也可以被当作一 个功能加强版的memcached来用。
Redis的主要缺点是数据库容量受到物理内存的限制,不能用作海量数据的高性能读写,因此Redis适合的场景主要局限在较小数据量的高性能操作和运算上。
总结来说,使用Redis的好处如下:
- 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)
- 支持丰富数据类型,支持string,list,set,sorted set,hash
- 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行
- 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除
Redis持久化的方式
redis提供了两种持久化的方式,分别是RDB(Redis DataBase)和AOF(Append Only File)。
1.RDB
简而言之,就是在不同的时间点,将redis存储的数据生成快照并存储到磁盘等介质上;
2.AOF
换了一个角度来实现持久化,那就是将redis执行过的所有写指令记录下来,在下次redis重新启动时,只要把这些写指令从前到后再重复执行一遍,就可以实现数据恢复了。
其实RDB和AOF两种方式也可以同时使用,在这种情况下,如果redis重启的话,则会优先采用AOF方式来进行数据恢复,这是因为AOF方式的数据恢复完整度更高。如果你没有数据持久化的需求,也完全可以关闭RDB和AOF方式,这样的话,redis将变成一个纯内存数据库,+持久化–就像memcache一样。
Redis常见性能问题和解决方案
- Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
- 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
- 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
- 尽量避免在压力很大的主库上增加从库
- 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3…。这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。
Redis的适用场景
1.会话缓存(Session Cache)
最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗?
幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。
2.队列
Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。
如果你快速的在Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用Redis创建非常好的后端工具,以满足各种队列需求。例如,Celery有一个后台就是使用Redis作为broker,你可以从这里去查看。
3.全页缓存(FPC)
除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。
再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。
4.排行榜/计数器
Redis在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的10个用户–我们称之为“user_scores”,我们只需要像下面一样执行即可:
当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行:ZRANGE user_scores 0 10 WITHSCORES,Agora Games就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你可以在这里看到。
Redis的高可用策略(单点故障避免策略)
1.高可用(High Availability)
当一台服务器停止服务后,对于业务及用户毫无影响。 停止服务的原因可能由于网卡、路由器、机房、CPU负载过高、内存溢出、自然灾害等不可预期的原因导致,在很多时候也称单点问题。
2.主备方式
这种通常是一台主机、一台或多台备机,在正常情况下主机对外提供服务,并把数据同步到备机,当主机宕机后,备机立刻开始服务。 Redis HA中使用比较多的是keepalived,它使主机备机对外提供同一个虚拟IP,客户端通过虚拟IP进行数据操作,正常期间主机一直对外提供服务,宕机后VIP自动漂移到备机上。
优点是对客户端毫无影响,仍然通过VIP操作。
缺点也很明显,在绝大多数时间内备机是一直没使用,被浪费着的。
3.主从方式
这种采取一主多从的办法,主从之间进行数据同步。 当Master宕机后,通过选举算法(Paxos、Raft)从slave中选举出新Master继续对外提供服务,主机恢复后以slave的身份重新加入。
主从另一个目的是进行读写分离,这是当单机读写压力过高的一种通用型解决方案。 其主机的角色只提供写操作或少量的读,把多余读请求通过负载均衡算法分流到单个或多个slave服务器上。
缺点是主机宕机后,Slave虽然被选举成新Master了,但对外提供的IP服务地址却发生变化了,意味着会影响到客户端。 解决这种情况需要一些额外的工作,在当主机地址发生变化后及时通知到客户端,客户端收到新地址后,使用新地址继续发送新请求。
4.方案选择
主备(keepalived)方案配置简单、人力成本小,在数据量少、压力小的情况下推荐使用。 如果数据量比较大,不希望过多浪费机器,还希望在宕机后,做一些自定义的措施,比如报警、记日志、数据迁移等操作,推荐使用主从方式,因为和主从搭配的一般还有个管理监控中心。
Redis的数据同步方式
无论是主备还是主从都牵扯到数据同步的问题,这也分2种情况:
- 同步方式:当主机收到客户端写操作后,以同步方式把数据同步到从机上,当从机也成功写入后,主机才返回给客户端成功,也称数据强一致性。 很显然这种方式性能会降低不少,当从机很多时,可以不用每台都同步,主机同步某一台从机后,从机再把数据分发同步到其他从机上,这样提高主机性能分担同步压力。 在redis中是支持这杨配置的,一台master,一台slave,同时这台salve又作为其他slave的master。
- 异步方式:主机接收到写操作后,直接返回成功,然后在后台用异步方式把数据同步到从机上。 这种同步性能比较好,但无法保证数据的完整性,比如在异步同步过程中主机突然宕机了,也称这种方式为数据弱一致性。
Redis主从同步采用的是异步方式,因此会有少量丢数据的危险。还有种弱一致性的特例叫最终一致性,这块详细内容可参见CAP原理及一致性模型。
分布式与集群
1.集群时代
至少部署两台Redis服务器构成一个小的集群,主要有2个目的:
- 高可用性:在主机挂掉后,自动故障转移,使前端服务对用户无影响。
- 读写分离:将主机读压力分流到从机上。
可在客户端组件上实现负载均衡,根据不同服务器的运行情况,分担不同比例的读请求压力。
2.Redis集群
分布式
缓存数据量不断增加时,单机内存不够使用,需要把数据切分不同部分,分布到多台服务器上。 可在客户端对数据进行分片,数据分片算法详见一致性Hash详解、虚拟桶分片。
大规模分布式集群时代
当数据量持续增加时,应用可根据不同场景下的业务申请对应的分布式集群。 这块最关键的是缓存治理这块,其中最重要的部分是加入了代理服务。 应用通过代理访问真实的Redis服务器进行读写,这样做的好处是:
避免越来越多的客户端直接访问Redis服务器难以管理,而造成风险。
在代理这一层可以做对应的安全措施,比如限流、授权、分片。
避免客户端越来越多的逻辑代码,不但臃肿升级还比较麻烦。
代理这层无状态的,可任意扩展节点,对于客户端来说,访问代理跟访问单机Redis一样。
陈睿mikechen
10年+大厂架构经验,资深技术专家,就职于阿里巴巴、淘宝、百度等一线互联网大厂。
关注「mikechen」公众号,获取更多技术干货!
后台回复【面试】即可获取《史上最全阿里Java面试题总结》,后台回复【架构】,即可获取《阿里架构师进阶专题全部合集》